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Stochastic block m

1. n nodes, k colors, about n/k nodes of each color

4 . if the same color
2. connect u to v with probability

S| SIo

if different colors
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Given the (uncolored) graph, recover the colors (up to
permutation) better than a random guess.

Definition

Let oy € {1,..., R} be the color of v. For another coloring ,

Olap(o, 7) = max #lvev: (;V =) %7

where max is over all permutations = on {1,...,R}.

Definition
(Gn,on) ~ G(n,R,a,b) is detectable if there exists e > 0 and
maps Ay : {graphs} — {labellings} such that

|.|m |anr(O[ap(0'n,An(Gn)) > 6) > @

n—o0

Otherwise it is undetectable. .
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Problem II: distinguishing

Given the (uncolored) graph, did it come from G(n, k,a, b) or
g(na %), where d = wf:’l)b?

Definition
Sequences P, and Qp of probability measures are

- contiguous if Pp(An) — 0 iff Qn(An) — 0
- orthogonal if 3A, with P,(An) — 0 and Qu(An) — 1.
Say that G(n, kR, a,b) is

- distinguishable if it is orthogonal to G(n, 2)
- indistinguishable if it is contiguous with G(n, %)



Better parametrization

4 = within-block edge probability
- b = between-block edge probability
k = number of blocks
_a+(kR-1)b
d= k
a—b
a+(k—"1)>b

Note A € [ — &, 1].



Phase diagram for k = 2

(Mossel/N/Sly, Massoulié)




Conjectured phase diagram for k = 20

(Decelle, Krzakala, Moore, Zdeborova)




What we know for k = 20




Theorem (Banks/Moore/N/Netrapalli)

g 2k log k

T O+ k=N og(1+ (k=N + (k—1)( — A log(1— \)
- _ 2log(k=1)
(kR —1)

- d > d* implies detectability, distinguishability.
- d < d~ implies undetectability, indistinguishability.
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lim ar _ W where y = 6=
koo - (14 p1) log(T + 1) — ne

d

If p~ £1and limy_,o, & ~ 1 (planted coloring / giant)



The proofs
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Detecting/distinguishing inefficiently

Consider partitions of G into k equal parts. A partition is good

if its average in-degree is ~ ¢ and its average out-degree is
(k=1)b

~ A /-
~

For suitable a, b, k, w.h.p.

- G(n,R,a,b):

all good partitions are correlated with the truth.
- g(n, %):

there are no good partitions.

Proof: concentration + union bound.
Distinguishing: check if there is a good partition.
Detecting: find a good partition.

Abbe/Sandon improved this for small d by taking the giant
component and pruning trees.

"
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Indistinguishability

SetP, = g(n,l?,a,b) and Q, = G(n, 9). Then
dp, Ko TTe 22 T (1- 292)
dQn [1e % [ (1 - %)
_ aorb)m - aorb)
n

dP, " (aorb)(aorb)
(@) - et Iy

o, 7 E

Under Qp, the events (u,v) € E are all independent, so can
compute:

dP,\° .
Eg, (dQn> = C(14 o(1))E exp(X' BX),

where X is a multinomial vector of length k2. 3



Indistinguishability

Replacing multinomials with Gaussians,

dP, \? ;
Eq, <dQn> — CEexp(Z'B2)
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Indistinguishability

Replacing multinomials with Gaussians,

dPﬂ ? T 2 1\k—1
Eg, <d<@n> — CE exp(Z"BZ) = 1(A\2d)

e—x/foz/A

- 2
Ve Finite whenever \d < 1.

where i(x) =

multinomials « Gaussians
& exp(X"BX) uniformly integrable
&x"Bx — nH(x) maximized at x = EX,
where H(x) is some kind of multivariate entropy.

Achlioptas-Naor: sufficient condition for the maximum to be at
x = EX. (They were studying planted colorings.)
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Indistinguishability

For the other direction (Pn(An) — 0 = Qn(A;) — 0), want to
show dP” bounded away from zero.

C”P” is

Small subgraph conditioning (Robinson/Wormald): §
essentially a function of the number of short cycles; |t
converges to an explicit limiting random variable that is never

Zero.

Main thing to check: convergence of second moment.

15
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Undetectability

Suffices to show that the distribution of G is not much affected
by conditioning on oy, oy. Let P; 5, P, , be P, conditioned on
two (possibly different) labellings of u, v.

dry(P1,n,P2n) — O
dﬂm‘]’n _ d]P)Zn
dQ,  dQp

dPin  dPyp ?
<:E@”<C/Qn — C/Qn> — 0

dP; , dP; ,
dQ, dQy

Similar to previous second moment computation.

— 0

= E@n

< Eg, — P(N2d).



Indistinguishability and undetectability follow from an explicit
second moment calculation. Use Achlioptas-Naor to estimate
the set of parameters where the second moment is finite.
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