The condensation threshold in stochastic block models

Joe Neeman (with Jess Banks, Cris Moore, Praneeth Netrapalli)
Austin, May 9, 2016

Stochastic block model $\mathcal{G}(n, k, a, b)$

1. n nodes, k colors, about n / k nodes of each color
2. connect u to v with probability $\begin{cases}\frac{a}{n} & \text { if the same color } \\ \frac{b}{n} & \text { if different colors }\end{cases}$

Problem I: detecting

Given the (uncolored) graph, recover the colors (up to permutation) better than a random guess.

Problem I: detecting

Given the (uncolored) graph, recover the colors (up to permutation) better than a random guess.
Definition
Let $\sigma_{v} \in\{1, \ldots, k\}$ be the color of v. For another coloring τ,

$$
\mathrm{O}_{\mathrm{lap}}(\sigma, \tau)=\frac{\#\left\{\mathrm{v} \in \mathrm{~V}: \sigma_{\mathrm{V}}=\tau_{\mathrm{v}}\right\}}{n}-\frac{1}{\mathrm{k}},
$$

Problem I: detecting

Given the (uncolored) graph, recover the colors (up to permutation) better than a random guess.
Definition
Let $\sigma_{v} \in\{1, \ldots, k\}$ be the color of v. For another coloring τ,

$$
\mathrm{O}_{\text {lap }}(\sigma, \tau)=\max _{\pi} \frac{\#\left\{\mathrm{~V} \in \mathrm{~V}: \sigma_{\mathrm{V}}=\pi\left(\tau_{\mathrm{V}}\right)\right\}}{n}-\frac{1}{k},
$$

where max is over all permutations π on $\{1, \ldots, k\}$.

Problem I: detecting

Given the (uncolored) graph, recover the colors (up to permutation) better than a random guess.
Definition
Let $\sigma_{v} \in\{1, \ldots, k\}$ be the color of v. For another coloring τ,

$$
\mathrm{O}_{\text {lap }}(\sigma, \tau)=\max _{\pi} \frac{\#\left\{v \in V: \sigma_{V}=\pi\left(\tau_{\mathrm{V}}\right)\right\}}{n}-\frac{1}{k},
$$

where max is over all permutations π on $\{1, \ldots, k\}$.

Definition

$\left(G_{n}, \sigma_{n}\right) \sim \mathcal{G}(n, k, a, b)$ is detectable if there exists $\epsilon>0$ and maps $A_{n}:\{$ graphs $\} \rightarrow$ \{labellings $\}$ such that

$$
\liminf _{n \rightarrow \infty} \operatorname{Pr}\left(\mathrm{O}_{\operatorname{lap}}\left(\sigma_{n}, A_{n}\left(G_{n}\right)\right)>\epsilon\right)>\epsilon .
$$

Otherwise it is undetectable.

Problem II: distinguishing

Given the (uncolored) graph, did it come from $\mathcal{G}(n, k, a, b)$ or $\mathcal{G}\left(n, \frac{d}{n}\right)$, where $d=\frac{a+(k-1) b}{k}$?

Problem II: distinguishing

Given the (uncolored) graph, did it come from $\mathcal{G}(n, k, a, b)$ or $\mathcal{G}\left(n, \frac{d}{n}\right)$, where $d=\frac{a+(k-1) b}{k}$?
Definition
Sequences \mathbb{P}_{n} and \mathbb{Q}_{n} of probability measures are

- contiguous if $\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$ iff $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0$
- orthogonal if $\exists A_{n}$ with $\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$ and $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 1$.

Problem II: distinguishing

Given the (uncolored) graph, did it come from $\mathcal{G}(n, k, a, b)$ or $\mathcal{G}\left(n, \frac{d}{n}\right)$, where $d=\frac{a+(k-1) b}{k}$?

Definition
Sequences \mathbb{P}_{n} and \mathbb{Q}_{n} of probability measures are

- contiguous if $\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$ iff $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0$
- orthogonal if $\exists A_{n}$ with $\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$ and $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 1$.

Say that $\mathcal{G}(n, k, a, b)$ is

- distinguishable if it is orthogonal to $\mathcal{G}\left(n, \frac{d}{n}\right)$
- indistinguishable if it is contiguous with $\mathcal{G}\left(n, \frac{d}{n}\right)$

Better parametrization

- $\frac{a}{n}=$ within-block edge probability
- $\frac{b}{n}=$ between-block edge probability
- $k=$ number of blocks

$$
\begin{aligned}
d & =\frac{a+(k-1) b}{k} \\
\lambda & =\frac{a-b}{a+(k-1) b}
\end{aligned}
$$

Note $\lambda \in\left[-\frac{1}{R-1}, 1\right]$.

Phase diagram for $k=2$
undetectable,
indistinguishable
(Mossel/N/Sly, Massoulié)

Conjectured phase diagram for $k=20$

distinguishable
(Decelle, Krzakala, Moore, Zdeborova)

What we know for $k=20$

Theorem (Banks/Moore/N/Netrapalli)

$$
\begin{aligned}
d^{+} & =\frac{2 k \log k}{(1+(k-1) \lambda) \log (1+(k-1) \lambda)+(k-1)(1-\lambda) \log (1-\lambda)} \\
d^{-} & =\frac{2 \log (k-1)}{\lambda^{2}(k-1)}
\end{aligned}
$$

- $d>d^{+}$implies detectability, distinguishability.
- $d<d^{-}$implies undetectability, indistinguishability.

Theorem (Banks/Moore/N/Netrapalli)

$$
\begin{aligned}
d^{+} & =\frac{2 k \log k}{(1+(k-1) \lambda) \log (1+(k-1) \lambda)+(k-1)(1-\lambda) \log (1-\lambda)} \\
d^{-} & =\frac{2 \log (k-1)}{\lambda^{2}(k-1)}
\end{aligned}
$$

- $d>d^{+}$implies detectability, distinguishability.
- $d<d^{-}$implies undetectability, indistinguishability.

If k is large enough then there are λ such that $d^{+}<\frac{1}{\lambda^{2}}$, giving the yellow region.

Theorem (Banks/Moore/N/Netrapalli)

$$
\begin{aligned}
d^{+} & =\frac{2 k \log k}{(1+(k-1) \lambda) \log (1+(k-1) \lambda)+(k-1)(1-\lambda) \log (1-\lambda)} \\
d^{-} & =\frac{2 \log (k-1)}{\lambda^{2}(k-1)}
\end{aligned}
$$

- $d>d^{+}$implies detectability, distinguishability.
- $d<d^{-}$implies undetectability, indistinguishability.

If k is large enough then there are λ such that $d^{+}<\frac{1}{\lambda^{2}}$, giving the yellow region.

$$
\lim _{k \rightarrow \infty} \frac{d^{+}}{d^{-}}=\frac{\mu^{2}}{(1+\mu) \log (1+\mu)-\mu} \text { where } \mu=\frac{a-b}{d}
$$

If $\mu \approx \pm 1$ and $\lim _{k \rightarrow \infty} \frac{d^{+}}{d^{-}} \approx 1$ (planted coloring / giant)

The proofs
detectable (quickly), distinguishable
(Bordenave/Lelarge/Massoulié, Abbe/Sandon)
. 0 - undetectable, indistinguishable (this work)

d

Detecting/distinguishing inefficiently

Consider partitions of G into k equal parts. A partition is good if its average in-degree is $\approx \frac{a}{k}$ and its average out-degree is
$\approx \frac{(k-1) b}{k}$.

Detecting/distinguishing inefficiently

Consider partitions of G into k equal parts. A partition is good if its average in-degree is $\approx \frac{a}{k}$ and its average out-degree is
$\approx \frac{(k-1) b}{k}$.
For suitable a, b, k, w.h.p.

- $\mathcal{G}(n, k, a, b)$:
all good partitions are correlated with the truth.

Detecting/distinguishing inefficiently

Consider partitions of G into k equal parts. A partition is good if its average in-degree is $\approx \frac{a}{k}$ and its average out-degree is
$\approx \frac{(k-1) b}{k}$.
For suitable a, b, k, w.h.p.

- $\mathcal{G}(n, k, a, b)$:
all good partitions are correlated with the truth.
- $\mathcal{G}\left(n, \frac{d}{n}\right)$:
there are no good partitions.

Detecting/distinguishing inefficiently

Consider partitions of G into k equal parts. A partition is good if its average in-degree is $\approx \frac{a}{k}$ and its average out-degree is
$\approx \frac{(k-1) b}{k}$.
For suitable a, b, k, w.h.p.

- $\mathcal{G}(n, k, a, b)$:
all good partitions are correlated with the truth.
- $\mathcal{G}\left(n, \frac{d}{n}\right)$:
there are no good partitions.
Proof: concentration + union bound.

Detecting/distinguishing inefficiently

Consider partitions of G into k equal parts. A partition is good if its average in-degree is $\approx \frac{a}{k}$ and its average out-degree is
$\approx \frac{(k-1) b}{k}$.
For suitable a, b, k, w.h.p.

- $\mathcal{G}(n, k, a, b)$:
all good partitions are correlated with the truth.
- $\mathcal{G}\left(n, \frac{d}{n}\right)$:
there are no good partitions.
Proof: concentration + union bound.
Distinguishing: check if there is a good partition.
Detecting: find a good partition.

Detecting/distinguishing inefficiently

Consider partitions of G into k equal parts. A partition is good if its average in-degree is $\approx \frac{a}{k}$ and its average out-degree is
$\approx \frac{(k-1) b}{k}$.
For suitable a, b, k, w.h.p.

- $\mathcal{G}(n, k, a, b)$:
all good partitions are correlated with the truth.
- $\mathcal{G}\left(n, \frac{d}{n}\right)$:
there are no good partitions.
Proof: concentration + union bound.
Distinguishing: check if there is a good partition.
Detecting: find a good partition.
Abbe/Sandon improved this for small d by taking the giant
component and pruning trees.

Indistinguishability

If $\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C<\infty$ then $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0 \Rightarrow \mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$.

Indistinguishability

If $\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C<\infty$ then $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0 \Rightarrow \mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$.
Set $\mathbb{P}_{n}=\mathcal{G}(n, k, a, b)$ and $\mathbb{Q}_{n}=\mathcal{G}\left(n, \frac{d}{n}\right)$. Then

$$
\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}=\frac{k^{-n} \sum_{\sigma} \prod_{E} \frac{a \text { or } b}{n} \prod_{E^{c}}\left(1-\frac{a \text { or } b}{n}\right)}{\prod_{E} \frac{d}{n} \prod_{E^{c}}\left(1-\frac{d}{n}\right)}
$$

Indistinguishability

If $\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C<\infty$ then $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0 \Rightarrow \mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$.
Set $\mathbb{P}_{n}=\mathcal{G}(n, k, a, b)$ and $\mathbb{Q}_{n}=\mathcal{G}\left(n, \frac{d}{n}\right)$. Then

$$
\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}=\frac{k^{-n} \sum_{\sigma} \prod_{E} \frac{a \text { or } b}{n} \prod_{E^{c}}\left(1-\frac{a \text { or } b}{n}\right)}{\prod_{E} \frac{d}{n} \prod_{E^{c}}\left(1-\frac{d}{n}\right)}
$$

$\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2}=R^{-2 n} \sum_{\sigma, \tau} \prod_{E} \frac{(a \text { or } b)(a \text { or } b)}{d^{2}} \prod_{E^{c}} \frac{\left(1-\frac{a \text { or } b}{n}\right)\left(1-\frac{a \text { or } b}{n}\right)}{\left(1-\frac{d}{n}\right)^{2}}$

Indistinguishability

If $\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C<\infty$ then $\mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0 \Rightarrow \mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0$.
Set $\mathbb{P}_{n}=\mathcal{G}(n, k, a, b)$ and $\mathbb{Q}_{n}=\mathcal{G}\left(n, \frac{d}{n}\right)$. Then

$$
\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}=\frac{k^{-n} \sum_{\sigma} \prod_{E} \frac{a \text { or } b}{n} \prod_{E^{c}}\left(1-\frac{a \text { or } b}{n}\right)}{\prod_{E} \frac{d}{n} \prod_{E^{c}}\left(1-\frac{d}{n}\right)}
$$

$\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2}=R^{-2 n} \sum_{\sigma, \tau} \prod_{E} \frac{(a \text { or } b)(a \text { or } b)}{d^{2}} \prod_{E^{c}} \frac{\left(1-\frac{a \text { or } b}{n}\right)\left(1-\frac{a \text { or } b}{n}\right)}{\left(1-\frac{d}{n}\right)^{2}}$

Under \mathbb{Q}_{n}, the events $(u, v) \in E$ are all independent, so can compute:

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2}=C(1+o(1)) \mathbb{E} \exp \left(X^{\top} B X\right)
$$

where X is a multinomial vector of length k^{2}.

Indistinguishability

Replacing multinomials with Gaussians,

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C \mathbb{E} \exp \left(Z^{\top} B Z\right)
$$

Indistinguishability

Replacing multinomials with Gaussians,

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C \mathbb{E} \exp \left(Z^{\top} B Z\right)=\psi\left(\lambda^{2} d\right)^{k-1}
$$

where $\psi(x)=\frac{e^{-x / 2-x^{2} / 4}}{\sqrt{1-x}}$. Finite whenever $\lambda^{2} d<1$.

Indistinguishability

Replacing multinomials with Gaussians,

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C \mathbb{E} \exp \left(Z^{\top} B Z\right)=\psi\left(\lambda^{2} d\right)^{k-1}
$$

where $\psi(x)=\frac{e^{-x / 2-x^{2} / 4}}{\sqrt{1-x}}$. Finite whenever $\lambda^{2} d<1$.
multinomials \leftrightarrow Gaussians

Indistinguishability

Replacing multinomials with Gaussians,

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C \mathbb{E} \exp \left(Z^{\top} B Z\right)=\psi\left(\lambda^{2} d\right)^{k-1}
$$

where $\psi(x)=\frac{e^{-x / 2-x^{2} / 4}}{\sqrt{1-x}}$. Finite whenever $\lambda^{2} d<1$.
multinomials \leftrightarrow Gaussians
$\Leftrightarrow \exp \left(X^{\top} B X\right)$ uniformly integrable

Indistinguishability

Replacing multinomials with Gaussians,

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C \mathbb{E} \exp \left(Z^{\top} B Z\right)=\psi\left(\lambda^{2} d\right)^{k-1}
$$

where $\psi(x)=\frac{e^{-x / 2-x^{2} / 4}}{\sqrt{1-x}}$. Finite whenever $\lambda^{2} d<1$.
multinomials \leftrightarrow Gaussians
$\Leftrightarrow \exp \left(X^{\top} B X\right)$ uniformly integrable $\Leftrightarrow x^{\top} B x-n H(x)$ maximized at $x=\mathbb{E} X$,
where $H(x)$ is some kind of multivariate entropy.

Indistinguishability

Replacing multinomials with Gaussians,

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C \mathbb{E} \exp \left(Z^{\top} B Z\right)=\psi\left(\lambda^{2} d\right)^{k-1}
$$

where $\psi(x)=\frac{e^{-x / 2-x^{2} / 4}}{\sqrt{1-x}}$. Finite whenever $\lambda^{2} d<1$.
multinomials \leftrightarrow Gaussians
$\Leftrightarrow \exp \left(X^{\top} B X\right)$ uniformly integrable $\Leftrightarrow x^{\top} B x-n H(x)$ maximized at $x=\mathbb{E} X$,
where $H(x)$ is some kind of multivariate entropy.
Achlioptas-Naor: sufficient condition for the maximum to be at $x=\mathbb{E} X$.

Indistinguishability

Replacing multinomials with Gaussians,

$$
\mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow C \mathbb{E} \exp \left(Z^{\top} B Z\right)=\psi\left(\lambda^{2} d\right)^{k-1}
$$

where $\psi(x)=\frac{e^{-x / 2-x^{2} / 4}}{\sqrt{1-x}}$. Finite whenever $\lambda^{2} d<1$.
multinomials \leftrightarrow Gaussians
$\Leftrightarrow \exp \left(X^{\top} B X\right)$ uniformly integrable $\Leftrightarrow x^{\top} B x-n H(x)$ maximized at $x=\mathbb{E} X$,
where $H(x)$ is some kind of multivariate entropy.
Achlioptas-Naor: sufficient condition for the maximum to be at $x=\mathbb{E} X$. (They were studying planted colorings.)

Indistinguishability

For the other direction ($\left.\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0 \Rightarrow \mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0\right)$, want to show $\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}$ bounded away from zero.

Indistinguishability

For the other direction ($\left.\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0 \Rightarrow \mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0\right)$, want to show $\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}$ bounded away from zero.
Small subgraph conditioning (Robinson/Wormald): $\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}$ is essentially a function of the number of short cycles; it converges to an explicit limiting random variable that is never zero.

Indistinguishability

For the other direction $\left(\mathbb{P}_{n}\left(A_{n}\right) \rightarrow 0 \Rightarrow \mathbb{Q}_{n}\left(A_{n}\right) \rightarrow 0\right)$, want to show $\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}$ bounded away from zero.
Small subgraph conditioning (Robinson/Wormald): $\frac{d \mathbb{P}_{n}}{d \mathbb{Q}_{n}}$ is essentially a function of the number of short cycles; it converges to an explicit limiting random variable that is never zero.

Main thing to check: convergence of second moment.

Undetectability

Suffices to show that the distribution of G is not much affected by conditioning on σ_{u}, σ_{V}.

Undetectability

Suffices to show that the distribution of G is not much affected by conditioning on σ_{u}, σ_{v}. Let $\mathbb{P}_{1, n}, \mathbb{P}_{2, n}$ be \mathbb{P}_{n} conditioned on two (possibly different) labellings of u, v.

$$
d_{T V}\left(\mathbb{P}_{1, n}, \mathbb{P}_{2, n}\right) \rightarrow 0
$$

Undetectability

Suffices to show that the distribution of G is not much affected by conditioning on σ_{u}, σ_{v}. Let $\mathbb{P}_{1, n}, \mathbb{P}_{2, n}$ be \mathbb{P}_{n} conditioned on two (possibly different) labellings of u, v.

$$
\begin{gathered}
d_{T V}\left(\mathbb{P}_{1, n}, \mathbb{P}_{2, n}\right) \rightarrow 0 \\
\Leftrightarrow \mathbb{E}_{\mathbb{Q}_{n}}\left|\frac{d \mathbb{P}_{1, n}}{d \mathbb{Q}_{n}}-\frac{d \mathbb{P}_{2, n}}{d \mathbb{Q}_{n}}\right| \rightarrow 0
\end{gathered}
$$

Undetectability

Suffices to show that the distribution of G is not much affected by conditioning on σ_{u}, σ_{v}. Let $\mathbb{P}_{1, n}, \mathbb{P}_{2, n}$ be \mathbb{P}_{n} conditioned on two (possibly different) labellings of u, v.

$$
\begin{aligned}
& d_{T V}\left(\mathbb{P}_{1, n}, \mathbb{P}_{2, n}\right) \rightarrow 0 \\
\Leftrightarrow & \mathbb{E}_{\mathbb{Q}_{n}}\left|\frac{d \mathbb{P}_{1, n}}{d \mathbb{Q}_{n}}-\frac{d \mathbb{P}_{2, n}}{d \mathbb{Q}_{n}}\right| \rightarrow 0 \\
\Leftrightarrow & \mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{1, n}}{d \mathbb{Q}_{n}}-\frac{d \mathbb{P}_{2, n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow 0
\end{aligned}
$$

Undetectability

Suffices to show that the distribution of G is not much affected by conditioning on σ_{u}, σ_{v}. Let $\mathbb{P}_{1, n}, \mathbb{P}_{2, n}$ be \mathbb{P}_{n} conditioned on two (possibly different) labellings of u, v.

$$
\begin{aligned}
& d_{T V}\left(\mathbb{P}_{1, n}, \mathbb{P}_{2, n}\right) \rightarrow 0 \\
\Leftrightarrow & \mathbb{E}_{\mathbb{Q}_{n}}\left|\frac{d \mathbb{P}_{1, n}}{d \mathbb{Q}_{n}}-\frac{d \mathbb{P}_{2, n}}{d \mathbb{Q}_{n}}\right| \rightarrow 0 \\
\Leftarrow & \mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{1, n}}{d \mathbb{Q}_{n}}-\frac{d \mathbb{P}_{2, n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow 0 \\
\Leftarrow & \mathbb{E}_{\mathbb{Q}_{n}} \frac{d \mathbb{P}_{i, n}}{d \mathbb{Q}_{n}} \frac{d \mathbb{P}_{j, n}}{d \mathbb{Q}_{n}} \rightarrow \psi\left(\lambda^{2} d\right)^{k-1} .
\end{aligned}
$$

Undetectability

Suffices to show that the distribution of G is not much affected by conditioning on σ_{u}, σ_{v}. Let $\mathbb{P}_{1, n}, \mathbb{P}_{2, n}$ be \mathbb{P}_{n} conditioned on two (possibly different) labellings of u, v.

$$
\begin{aligned}
& d_{T V}\left(\mathbb{P}_{1, n}, \mathbb{P}_{2, n}\right) \rightarrow 0 \\
\Leftrightarrow & \mathbb{E}_{\mathbb{Q}_{n}}\left|\frac{d \mathbb{P}_{1, n}}{d \mathbb{Q}_{n}}-\frac{d \mathbb{P}_{2, n}}{d \mathbb{Q}_{n}}\right| \rightarrow 0 \\
\Leftarrow & \mathbb{E}_{\mathbb{Q}_{n}}\left(\frac{d \mathbb{P}_{1, n}}{d \mathbb{Q}_{n}}-\frac{d \mathbb{P}_{2, n}}{d \mathbb{Q}_{n}}\right)^{2} \rightarrow 0 \\
\Leftarrow & \mathbb{E}_{\mathbb{Q}_{n}} \frac{d \mathbb{P}_{i, n}}{d \mathbb{Q}_{n}} \frac{d \mathbb{P}_{i, n}}{d \mathbb{Q}_{n}} \rightarrow \psi\left(\lambda^{2} d\right)^{k-1} .
\end{aligned}
$$

Similar to previous second moment computation.

Summary

Indistinguishability and undetectability follow from an explicit second moment calculation. Use Achlioptas-Naor to estimate the set of parameters where the second moment is finite.

Thank you!

