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Stochastic block model G(n, k,a,b)

1. n nodes, k colors, about n/k nodes of each color

2. connect u to v with probability

a
n if the same color
b
n if different colors
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Problem I: detecting

Given the (uncolored) graph, recover the colors (up to
permutation) better than a random guess.

Definition
Let σv ∈ {1, . . . , k} be the color of v. For another coloring τ ,

Olap(σ, τ) =

max
π

#{v ∈ V : σv =

π(

τv

)

}
n − 1

k ,

where max is over all permutations π on {1, . . . , k}.

Definition
(Gn, σn) ∼ G(n, k,a,b) is detectable if there exists ϵ > 0 and
maps An : {graphs} → {labellings} such that

lim inf
n→∞

Pr(Olap(σn,An(Gn)) > ϵ) > ϵ.

Otherwise it is undetectable.
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Problem II: distinguishing

Given the (uncolored) graph, did it come from G(n, k,a,b) or
G(n, dn), where d = a+(k−1)b

k ?

Definition
Sequences Pn and Qn of probability measures are

• contiguous if Pn(An) → 0 iff Qn(An) → 0
• orthogonal if ∃An with Pn(An) → 0 and Qn(An) → 1.

Say that G(n, k,a,b) is

• distinguishable if it is orthogonal to G(n, dn)
• indistinguishable if it is contiguous with G(n, dn)
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Better parametrization

• a
n = within-block edge probability

• b
n = between-block edge probability

• k = number of blocks

d =
a+ (k− 1)b

k

λ =
a− b

a+ (k− 1)b

Note λ ∈
[
− 1

k−1 , 1
]
.
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Phase diagram for k = 2

0 5 10 15 20

d

−1.0

−0.5

0.0

0.5

1.0

λ

λ2d = 1

detectable,
distinguishable

undetectable,
indistinguishable

(Mossel/N/Sly, Massoulié)
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Conjectured phase diagram for k = 20
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What we know for k = 20
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Theorem (Banks/Moore/N/Netrapalli)

d+ =
2k log k

(1+ (k− 1)λ) log(1+ (k− 1)λ) + (k− 1)(1− λ) log(1− λ)

d− =
2 log(k− 1)
λ2(k− 1)

• d > d+ implies detectability, distinguishability.
• d < d− implies undetectability, indistinguishability.

If k is large enough then there are λ such that d+ < 1
λ2 , giving

the yellow region.

lim
k→∞

d+
d− =

µ2

(1+ µ) log(1+ µ)− µ
where µ =

a− b
d .

If µ ≈ ±1 and limk→∞
d+
d− ≈ 1 (planted coloring / giant)
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The proofs
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Detecting/distinguishing inefficiently

Consider partitions of G into k equal parts. A partition is good
if its average in-degree is ≈ a

k and its average out-degree is
≈ (k−1)b

k .

For suitable a,b, k, w.h.p.

• G(n, k,a,b):
all good partitions are correlated with the truth.

• G(n, dn):
there are no good partitions.

Proof: concentration + union bound.

Distinguishing: check if there is a good partition.

Detecting: find a good partition.

Abbe/Sandon improved this for small d by taking the giant
component and pruning trees.
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Indistinguishability

If EQn

(
dPn
dQn

)2
→ C <∞ then Qn(An) → 0 ⇒ Pn(An) → 0.

Set Pn = G(n, k,a,b) and Qn = G(n, dn). Then

dPn
dQn

=
k−n∑

σ

∏
E
a or b

n
∏

Ec
(
1− a or b

n

)
∏

E
d
n
∏

Ec
(
1− d

n

)
(
dPn
dQn

)2
= k−2n

∑
σ,τ

∏
E

(a or b)(a or b)
d2

∏
Ec

(1− a or b
n )(1− a or b

n )

(1− d
n)

2

Under Qn, the events (u, v) ∈ E are all independent, so can
compute:

EQn

(
dPn
dQn

)2
= C(1+ o(1))E exp(XTBX),

where X is a multinomial vector of length k2.
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Indistinguishability

Replacing multinomials with Gaussians,

EQn

(
dPn
dQn

)2
→ CE exp(ZTBZ)

= ψ(λ2d)k−1

where ψ(x) = e−x/2−x2/4
√
1−x . Finite whenever λ2d < 1.

multinomials ↔ Gaussians

⇔ exp(XTBX) uniformly integrable
⇔xTBx− nH(x) maximized at x = EX,

where H(x) is some kind of multivariate entropy.

Achlioptas-Naor: sufficient condition for the maximum to be at
x = EX. (They were studying planted colorings.)
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Indistinguishability

For the other direction (Pn(An) → 0 ⇒ Qn(An) → 0), want to
show dPn

dQn
bounded away from zero.

Small subgraph conditioning (Robinson/Wormald): dPn
dQn

is
essentially a function of the number of short cycles; it
converges to an explicit limiting random variable that is never
zero.

Main thing to check: convergence of second moment.
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Undetectability

Suffices to show that the distribution of G is not much affected
by conditioning on σu, σv.

Let P1,n,P2,n be Pn conditioned on
two (possibly different) labellings of u, v.

dTV(P1,n,P2,n) → 0

⇔ EQn

∣∣∣∣dP1,n
dQn

− dP2,n
dQn

∣∣∣∣ → 0

⇐ EQn

(
dP1,n
dQn

− dP2,n
dQn

)2
→ 0

⇐ EQn

dPi,n
dQn

dPj,n
dQn

→ ψ(λ2d)k−1.

Similar to previous second moment computation.
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Summary

Indistinguishability and undetectability follow from an explicit
second moment calculation. Use Achlioptas-Naor to estimate
the set of parameters where the second moment is finite.
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Thank you!
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